Memory Effects
Memory effects in LiFePO4 cells were discovered and studied by Sasaki et al. [6] and the results published in Nature Materials in 2013. The authors illustrated that, under specific circumstances, the prior cycling history of a cell alters the voltage curve during charging by causing the voltage to increase faster and earlier than expected.
For a memory effect to appear, an incomplete charge cycle followed by a rest period and a discharge must have taken place earlier (memory-writing cycle). A partial charge followed by an immediate discharge is not sufficient to record a memory of the incomplete cycle [7]; this is important because the practical consequence is that a charge-and-hold strategy is particularly harmful when full charge was not achieved. It is not uncommon for DIY lithium battery systems to implement deficient charging strategies which in fact result in this scenario taking place and it is detrimental to the long-term performance of the battery bank.
When a memory-writing cycle has been completed, an abnormal increase in voltage can be observed afterwards as the charging process approaches the point where charging had stopped earlier; this creates a bump in the charging curve. Partial charging of all common types of lithium cells (with the notable exception of lithium titanate oxide Li4Ti5O12) leaves the cell with divided lithium-rich and lithium-poor phases which persist during and after discharge. In order to erase the cell memory of the previous interrupted cycle(s), a full charge must be performed (memory-releasing cycle) and this requires overcoming the bump caused by past partial cycles.
The memory effect was found to strengthen with the number of incomplete charge cycles performed before the erase cycle. It was also strengthened when a partial charge was followed by a shallow discharge, rather than a deep discharge.
These latter aspects have proved to be of key significance when considering the longer term performance of LiFePO4 batteries in house bank applications, because incomplete charge cycles are common when relying on renewable energy sources and shallow discharge cycles are also frequently experienced. These have the potential to render battery banks near unusable after as little as 2-3 years in regular service in the absence of memory-releasing cycles. Ineffective memory-releasing cycles are very common in DIY installations where the charging process is not properly controlled and/or configured incorrectly by fear of overcharging or due to widespread mythologies.
An absence of memory-release cycles caused by ineffective charging allows the voltage bump caused by the memory effect to grow over time. If the absorption voltage and/or the absorption time are insufficient to overcome it, the charging process gradually terminates earlier and earlier. This has a compounding effect as memory-writing begins to occur at lower and lower values of SOC over time and the available capacity of the battery can disappear almost completely without any loss of lithium or chemical degradation as such. Recovering battery banks in this state can be challenging and require many memory-release charging cycles using high absorption voltages, followed by deep discharge. For these reasons, LiFePO4 batteries should be charged properly whenever the opportunity arises, so the effects of unavoidable previous partial cycles can be wiped out while it is still relatively easy to do so. This calls for a robust absorption voltage and a charging strategy providing adequate charge absorption. Anything else falling short of this will eventually result in significant performance and capacity issues.
nordkyndesign.com/practical-ch...phate-battery-cells/